A new pendant oxygen-conserving cannula which allows pursed lips breathing.

B L Tiep, M Burns and J Hererra

Chest 1989;95:857-860
DOI 10.1378/chest.95.4.857

The online version of this article, along with updated information and services can be found online on the World Wide Web at: http://chestjournal.chestpubs.org/content/95/4/857
A New Pendant Oxygen-Conserving Cannula Which Allows Pursed Lips Breathing

Brian L. Tiep, M.D.;* Mary Burns, R.N., B.S.;† and Jackie Hererra, C.R.T.T‡

Multiple benefits of oxygen therapy for hypoxemic patients with chronic lung disease are well established. Steady flow oxygen therapy is inefficient, wasteful and has a high cost. The Oxymizer pendant improves efficiency of oxygen delivery compared with SF. However, the device requires that the patient inhale and exhale nasally to maximize its oxygen-saving properties. When patients do PLB they may not receive full oxygen-saving benefit of the pendant. Yet PLB itself can increase \(S_aO_2 \). We evaluated an AP, which does not require nasal exhalation, in nine patients with COPD. We measured \(S_aO_2 \) while breathing oxygen via SF and the AP with nasal-only breathing and PLB. Results indicate that the AP maintains an increase in \(S_aO_2 \) over SF during nasal-only breathing and a further increase during PLB. We conclude that AP acts as an oxygen conserver during PLB; PLB with the AP achieves greater savings than with nasal-only breathing.

The standard pendant conserving nasal cannula7-12 (Chad Therapeutics, Inc, Chatsworth, CA; Fig 1) consists of nasal prongs attached to cannula tubing which is connected to the pendant reservoir. Oxygen enters the system at the junction of the tubing and the reservoir. The actual storge of oxygen occurs in the tubing rather than with nasal-only breathing.

METHODS

Pendant Conserver Cannula

The standard pendant conserving nasal cannula7-12 (Chad Therapeutics, Inc, Chatsworth, CA; Fig 1) consists of nasal prongs attached to cannula tubing which is connected to the pendant reservoir. Oxygen enters the system at the junction of the tubing and the reservoir. The actual storge of oxygen occurs in the tubing rather than...
Pendant supply (ml/min)

than in the reservoir. At the beginning of exhalation, the reservoir fills with dead space gas and some oxygen. During most of exhalation, the tubing fills with oxygen. When the patient is ready to inhale, the reservoir provides the means to reflux the oxygen stored in the tubing in addition to the steady supply flow to the patient. The overall effect is early inspiratory delivery of an oxygen bolus.

We modified the pendant so that the membrane of the reservoir does not rely on the patient’s exhalation to reset for oxygen storage; it auto-resets. This allows PLB.

Protocol

Nine patients with COPD with a mean age of 69 ± 6.4 years, an FVC of 1.7 ± 0.4 L and an FEV₁ of 0.7 ± 0.2 L were recruited from the inpatient pulmonary rehabilitation program at Casa Colina Hospital for Rehabilitative Medicine in Pomona, CA, and the outpatient pulmonary rehabilitation program at Little Company of Mary Hospital in Torrance, CA. The subjects were hypoxemic at rest and all were on long-term oxygen therapy. Informed consent was obtained in accordance with the standards set by the Institutional Review Boards of the two institutions in which the study was performed.

Pulmonary function measurements were obtained using a calibrated electronic spirometer (Hewlett Packard, Inc, Falo Alto, CA). The best of three forced expiratory efforts was recorded for each subject.

Oxygen saturation values were measured with the use of a Biox IIa ear oximeter (Ohmeda, Inc, Boulder, CO) at rest and at the various flows, allowing sufficient time for equilibration to take place. The order of presentation of the cannulas was randomized but we always started with the lowest supply flows and proceeded to the higher supply flows. Oxygen delivery via SF was set for 1, 2, 3 and 4 L/min, and for the pendant the settings were 0.25, 0.5 and 1.0 L/min both during non-PLB and PLB. The PLB was taught by a nurse according to a previously set method used in our former study which demonstrated a significant increase in \(\text{SaO}_2\) by the technique in patients breathing room air. All of the patients in this study were experienced pursed lips breathers. We closely monitored the patients to assure that they were using the appropriate breathing method for each section of the study. Oxygen supply flow was metered via spirometrically calibrated settings of a liquid oxygen system (Liberator Stroller). Data were compared by analysis of variance techniques followed by Duncan’s multiple range comparison.

RESULTS

Oxygen saturation performance curves for SF delivery, and the AP during PLB and non-PLB are shown in Figure 2. Oxygen saturation was improved using supplemental oxygen delivered by either cannula. At 0.25 L/min, the AP, during non-PLB and PLB, achieved the equivalent of SF at 1 and 1.7 L/min, respectively. At 0.5 L/min, the AP, during non-PLB and PLB, achieved the equivalent of steady flow at 2.3 and 2.9 L/min, respectively. At 1 L/min, the AP, during non-PLB and PLB, achieved the equivalent of SF at 4 and 4.5 L/min, respectively. In each instance, the AP conservers yielded higher saturations than the SF cannula during non-PLB and there was a further increase during PLB. These differences in oxygen requirement to achieve equivalent saturations, between non-PLB and PLB conditions were statistically significant (p<0.01).

The SF equivalents as depicted in Figure 3 demonstrate the oxygen savings using the AP during non-PLB and PLB as compared with SF oxygen. At 0.25 L/min the AP oxygen savings were 4.2:1 and 6.8:1 as compared with SF during non-PLB and PLB, respectively. At 0.5 L/min, the AP oxygen savings were 4.5:1 and 5.8:1 as compared with SF during non-PLB and PLB, respectively. At 1 L/min, the AP oxygen savings were 4:1 and 4.5:1 as compared with SF during non-PLB and PLB, respectively.

A New Pendant Oxygen-conserving Cannula (Tiep, Burns, Herrera)
DISCUSSION

This study demonstrates that the AP improves the efficiency of oxygen delivery whether the patient is breathing strictly nasally or with pursed lips. The oxygen savings are greater when the patient is doing PLB. This study did not evaluate the standard pendant while the patient does PLB. However, it is known that patients who breathe with pursed lips exhale solely through their mouths and the reservoir mechanism of the standard pendant requires nasal exhalation to be able to reset the reservoir membrane. If patients who do PLB completely occlude their nasal passages during exhalation, it is unlikely that they will be able to reset the reservoir membrane in order to benefit from the oxygen-conserving mechanism of the pendant.

Previous PLB studies have demonstrated several benefits of PLB. Patients enjoy the subjective benefit of being able to breathe more comfortably and also the physiologic benefits of increasing the SaO₂ and CO₂ removal. Pursed-lips breathing appears to be a rather natural method that patients discover spontaneously because it relieves dyspnea. Pulmonary rehabilitation programs regularly include PLB retraining as a standard part of their education program.

Early studies on the pendant demonstrated that the standard pendant oxygen-conserving nasal cannula achieves significantly greater SaO₂ values than the SF cannula during both rest and exercise. In most of these studies the savings benefit of the standard pendant over the SF cannula was 4:1 at 0.5 L/min, 3:1 at 1 L/min and 2:1 at 2 L/min. Those findings were almost identical to those found with the mustache-configured Oxymizer.

The pendant functions by storing oxygen during exhalation for early inspiratory delivery during the next inhalation. The mechanism for oxygen savings via the pendant is based on the fact that SF oxygen therapy is inefficient and wasteful. If the respiratory-time cycle were divided into thirds, typically two thirds of the time might be spent on exhalation, leaving one third for inhalation. When one examines the inhalation portion of the respiratory-time cycle, the inspiratory flow curve is steepest during early inhalation with relatively more time spent on dead space inhalation. We estimate that one third to one half of inhalation is early inhalation—contributing to alveolar oxygenation. One might then expect the oxygen saving to approach 8:1 over SF if all oxygen delivery could be effectively focused on early inhalation.

However, the standard pendant does not reach the level of savings suggested by the previously noted model. An explanation is that the patient must exhale through the cannula to reset the membrane and create the chamber. As a result, no oxygen storage is possible during late (dead space) inhalation—wasting some time which could be devoted to oxygen storage. Electronic demand pulsed-oxygen delivery devices such as the Oxymatic do achieve a greater oxygen delivery efficiency because no oxygen is wasted during dead-space inhalation. The savings reported in the present study are greater than those reported via the standard pendant, particularly at 1 L/min. We recommend a future study to determine if the AP, which does not wait for exhalation before resetting the membrane, is more or less efficient than the standard pendant.

An earlier PLB study, without supplemental oxygen, demonstrated that patients could be taught to raise their SaO₂ using that breathing retraining technique with the biofeedback guidance of ear oximetry. In that study, there was a significant increase in tidal volume, a significant decrease in respiratory rate but no significant change in minute volume. It was the results of that study which inspired the attempt to combine the effects of PLB with the oxygen-conserving properties of the pendant.

The present study did not evaluate PLB on room air vs supplemental oxygen or the standard pendant during PLB. However, we did study PLB at various liter-flows of oxygen using the AP. There was a consistent increase in saturation; hence, the effect was likely to be additive. Also, we found consistently higher saturations via the AP during PLB than achieved by nasal-only breathing for the same liter flow of oxygen. This also supports the notion that the effect of PLB is additive to the oxygen-conserving properties of the pendant.

This study did not evaluate patients under exercise conditions, which would be important in patients using...
ambulatory oxygen. Those studies need to be performed prior to widespread clinical use because its most important application is in the ambulatory patient.

In summary, the AP improves oxygen delivery efficiency as compared to SF. In addition, patients can do their PLB and further improve upon their oxygenation. The use of this device could result in substantial cost savings, increased portability and extended time away from the stationary oxygen source.

ACKNOWLEDGMENTS: Dr. Tiep is one of the designers of the Oxymizer, Pendant and the Oxymatic oxygen-conserving device. Dr. Tiep may receive financial compensation from these devices as well as improvements and modifications. The authors wish to thank Barbara Mosley, secretary, and the Pulmonary Rehabilitation Teams of both Casa Colina and Little Company of Mary Hospitals and the Foundation for Pulmonary Education and Research. Mary Burns, R.N.; taught Tlep.

REFERENCES
1 Anthonisen RN. Hypoxemia and oxygen therapy. Am Rev Respir Dis 1982; 135:729
16 Tiep BL. Rehabilitative hope for patients with chronic lung disease. Continuing Care 1987; 6:18-23
18 Tiep BL. New portable oxygen devices. Resp Care 1987; 32:106-12
24 Ries AL. Improving the cost-efficiency of oxygen therapy (Editorial). Chest 1986; 89:770-71
27 Petty TL, Guthrie A. The effects of augmented breathing maneuvers on ventilation in severe chronic airway obstruction. Resp Care 1971; 16:104-11
34 Moore LP, Hellard DW, Block AJ. Product validation for the intermittent demand oxygen system (Oxymatic) (abstract). Am Rev Respir Dis 1986; 133(4):210
A new pendant oxygen-conserving cannula which allows pursed lips breathing.
B L Tiep, M Burns and J Hererra

Chest 1989;95; 857-860
DOI 10.1378/chest.95.4.857

This information is current as of January 21, 2010